CONFERENCE OVERVIEW and TECHNICAL PROGRAM
APERÇU DE LA CONFÉRENCE et PROGRAMME TECHNIQUE

Canada’s leading aeronautics conference | La principale conférence en aéronautique au Canada
Sheraton Laval Hotel, Montréal, Québec | May 14-16 mai
GENERAL CONFERENCE CHAIR
Éric Laurendeau | Polytechnique Montréal

ADVISORY COMMITTEE CHAIR
Denis Faubert | CARIC

TECHNICAL COMMITTEE
Billy Allan | Royal Military College of Canada
Kamran Behdinan | University of Toronto
Behnam Ashrafi | NRC Aerospace
Goetz Bramesfeld | Ryerson University
Ruxandra Botez – Ecole de technologie supérieure
Patrice Castonguay | Bombardier Aerospace
Julien Chaussée | Altair Canada
James Crone | Pratt and Whitney Canada
Philippe Doyon-Poulin | Bombardier Aerospace
Stéphane Dufresne | Bombardier Aerospace
Mostafa El Sayed | Carleton University
Javad Gholipour | NRC Aerospace
Malcolm Imray | NRC Aerospace
Johan Johnsson | Bombardier Aerospace
Fidel Khouli | Carleton University
Susan Liscouet-Hanke | Concordia University
Catherine Mavriplis | University of Ottawa
Philippe Molaret | Thales Canada Inc.
Stéphane Moreau | Université de Sherbrooke
François Morency | Ecole de technologie supérieure
Siva Nadarajah | McGill University
Mathieu Olivier | Université Laval
Pat Piperni | Clarkson University
Dominique Poirel | Royal Military College of Canada
Alberto Pueyo | Bombardier Aerospace
David Rancourt | Université de Sherbrooke
Charles Armand Tatossian | Bombardier Aerospace
Mike Theophanides | CAE
Sylvain Turenne | Polytechnique Montréal
Brian Vermeire | Concordia University
Denis Walch | Bombardier Aerospace

CASI HQ STAFF
Geoffrey Languedoc, April Duffy, Todd Legault

AERO 2019 SPONSORS

Gold Level Sponsors

Silver Level Sponsors

Bronze Level Sponsors
Plenary Information

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Session</th>
<th>Speaker(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tues. 14 May</td>
<td>09:15 – 10:00</td>
<td>Keynote Presentation</td>
<td>Martine Rothblatt, CEO Unither Bioelectronics/United Therapeutics Corporation</td>
</tr>
</tbody>
</table>
| Tues. 14 May | 10:30 – 12:00 | Plenary 1 Urban Mobility | Denis Faubert (Chair) | CEO, CARIC
Michelle Dion | Innovation Lead, Bell Helicopter
Wajid Ali Chisty | Program Leader, NRC
José Martin | Program Manager, Transport Canada
Phil Cole | VP Business Development, Marinvent |
| Wed. 15 May | 08:30 – 10:00 | Plenary 2 Hybrid/Electric Propulsion | David Rancourt (Chair) | Université Sherbrooke
Askin Isikveren | Safran Group
Philippe Novelli | ONERA
Sylvain Larochelle | Pratt & Whitney Canada |
| Wed. 15 May | 13:00 – 14:30 | Plenary 3 Industry 4.0 (may be presented in French) | Catherine Beaudry (Chair) | Polytechnique Montréal
Bruno Agard | Polytechnique Montréal
Yoan Buisson | Stelia Aerospace
Yves Proteau | APN |
| Thur. 16 May | 08:30 – 10:00 | Plenary 4 Impact of 5G | Mark Aruja (Chair) | DG, Unmanned Systems Canada
Christophe Bouchaud | Principal VP, Aviation Strategies International
Pierre Boucher | DG, ENCQOR Consortium
Brunilde Sansò | Professor, Polytechnique Montréal
Sébastien Vaillancourt | Program Manager, Thales |

AERO 2019 Exhibitors

- Altair
- Institute for Aerospace Studies, University of Toronto
- MACFab
Technical Session 1

Tues 14 May | 13:30-15:00

Chair: Charles Tatossian
Bombardier Aerospace

Chair: Catherine Mavriplis
U. of Ottawa

Chair: Mehdi Hojjati,
Concordia University

Chair: Sylvain Labonté,
NRC

Chair: Denis Walch,
Bombardier Aerospace

Chair: Billy Allan,
Royal Military College of Canada

Chair: Jeremy Laliberte,
Carleton University

Chair: Philippe Doyon-Poulin,
Polytechnique Montréal

Topics

- **Aerodynamics**
- **Aerospace Manufacturing Technologies**
- **Aerospace Structures & Materials**
- **Propulsion**
- **Aircraft Design & Development**
- **Human Factors & Training**
- **Flight Ops & Flight Test**
- **Unmanned Aerial Vehicles**
- **Cockpit Display Design & Augmented Reality (AR)**

Abstracts

1A-01

36 - Evaluating of the impact of morphing horizontal tail design of the UAS-S45

Chair: Charles Tatossian
Bombardier Aerospace

Marine Seguí et al
ETS-LARCASE

Reda Merabet et al
Polytechnique Montréal

Emmanuel Maes
ULaval

Shahrazad A. Taher et al
Carleton U

Pradeep Dass et al
Benjamin Dalman et al

Maryam Safi et al
U of Ottawa

1B-01

84 - Towards an actuator line method for helicopter rotors computations

Chair: Catherine Mavriplis
U. of Ottawa

Frédéric Moens
ONERA

Devin Barcelos et al
Ryerson U

Emmanuel Maes
Stelia North America

Braden Warwick
Queen’s U

Curtis Kaatz et al
Brendan Ooi et al

Vamshi Chittaluri
Carleton U

1C-01

1D-01

5 - Design and characterization of micro-structured tensegrity lattice materials as a new candidate for skin panels of morphing aircraft wings

Chair: Mehdi Hojjati
Concordia University

Vincent Myrand-Lapierre
CAE

Christophe Alsì et al
Polytechnique Montréal

Redouane Lombarkia
U Laval

Hicham Ousseni
ETS

Hugh Liu
UTIAS

Maxence Hébert-Lavoie
Polytechnique Montréal

1E-01

1F-01

180 - Multidisciplinary design optimization of a small-scale supersonic UAV using SUAVE

Chair: Billy Allan
Royal Military College of Canada

Terrin Stach et al
RMC

Doukaini Mavroidi et al
Carleton U

David Communier et al
ETS-LARCASE

Sam Clement-Coulson et al
Concordia U
Technical Session 2

Tues 14 May | 15:30-17:00

Terrebonne
- **Chair:** Stéphane Moreau, Université de Sherbrooke
- **Academic:** Polytechnique Montréal
- **Industry:** Aviation, Aérospatiale

Rosmère
- **Chair:** Dominique Poirel, Royal Military College of Canada
- **Academic:** Polytechnique Montréal
- **Industry:** Aviation, Aérospatiale

Des Prairies
- **Chair:** Louis L. Lebel, Polytechnique Montréal
- **Academic:** Polytechnique Montréal
- **Industry:** Aviation, Aérospatiale

Chomedey
- **Chair:** Sylvain Turenne, Polytechnique Montréal
- **Academic:** Polytechnique Montréal
- **Industry:** Aviation, Aérospatiale

Auteuil
- **Chair:** James Crone, Pratt & Whitney Canada
- **Academic:** Polytechnique Montréal
- **Industry:** Aviation, Aérospatiale

Vimont
- **Chair:** Mohammad Riazi, Bombardier Aerospace
- **Academic:** Polytechnique Montréal
- **Industry:** Aviation, Aérospatiale

Giuseppe-Saputo
- **Chair:** Phil Cole, Marinvent
- **Academic:** Polytechnique Montréal
- **Industry:** Aviation, Aérospatiale

Aerospace Structures & Materials
- **2A-01** 64 - Gradient-free high-fidelity airfoil optimization
 - Reza Sadri et al.
 - Bombardier Aerospace

- **2B-01** 110 - Performance and heat transfer calculation for rotors using the unsteady vortex lattice method
 - Abdullah Samad et al.
 - ETS-LARCASE

- **2C-01** 177 - Manufacturing thermoplastic composite structures using automated fiber placement (invited)
 - Jihua Chen et al.
 - NRC

- **2D-01** 10 - Energy and exergy mapping of a modern aircraft: case study
 - Patrick Kendall et al.
 - Queen's U

- **2E-01** 30 - Energy and exergy mapping of a modern aircraft: case study
 - Hugues Pellerin et al.
 - McGill U

- **2F-01** 60 - Generalized extended state observer-based control application for active disturbance rejection of the UAS-54 Hécatil design
 - Hugo Yañez-Badillo et al.
 - Talancang Polytechnic U

- **2G-01** 66 - Effects of recent pilot-in-command hours on situation awareness and critical incidents for pilots across the lifespan
 - Kathleen Van Benthem et al.
 - Carleton U

Human Factors & Training / Flight Ops & Flight Test
- **2A-02** 116 - Toward non-linear unsteady vortex lattice method (NL-UVLM) for rotary wing aerodynamics
 - Michael Melville et al.
 - Ryerson U

- **2B-02** 154 - The effect of braid pattern on the pulling force of thermoplastic braid-trusion sandwich panels
 - Vincent Proulx-Cabana et al.
 - ETS-LARCASE

- **2C-02** 19 - Multiscale design optimization of eco-efficient freight rail cars employing lightweight honeycomb sandwich panels
 - Mohammad Ghaedsharaf et al.
 - Polytechnique Montréal

- **2D-02** 183 - Propulsion System Maintenance in the 21st Century
 - Ayman Al-Sukhon et al.
 - McGill U

- **2E-02** 97 - Nonlinear adaptive fuzzy control of uncertain chaotic click mechanism flapping-wing
 - Capt. Paul Bordush
 - Ryerson U

- **2F-02** 52 - Method and system for determining a recirculation effect from an obstacle on a main rotor induced velocity of a simulated rotorcraft
 - Seyed Mohammad Hashemiet al.
 - Carleton U

- **2G-02** 127 - Development of a full-flight simulator for the Canadian environment
 - Carlo Ferlisi et al.
 - CAE Inc

Simulation and Pilot Training
- **2A-03** 144 - Determination of scaling factor for unmanned aerial vehicle rotors
 - Dylan Caverly et al.
 - McGill U

- **2B-03** 101 - Compilation and characterization of the current state of a propulsion engine: a comparison of machine learning frameworks
 - Ammar Jessa et al.
 - Ryerson U

- **2C-03** 83 - 138 - Wind disturbance rejection for a flying-wing tail-sitter
 - Nima Bakhshi et al.
 - Concordia U

- **2D-03** 81 - 140 - Characterizing the current state of a propulsion engine: a comparison of machine learning frameworks
 - Hamed Niknам et al.
 - McGill U

- **2E-03** 140 - Characterizing the current state of a propulsion engine: a comparison of machine learning frameworks
 - Sriushi Sehgal et al.
 - McGill U

- **2F-03** 95 - Dynamic soaring using a neuro-evolutionary approach
 - Ruben Perez et al.
 - RMC

- **2G-03** 127 - Development of a full-flight simulator for the Canadian environment
 - Julien Guay et al.
 - CAE Inc

Aircraft Design & Development
- **2A-04** 63 - Numerical investigation of vortex ring state rotors
 - Aditya Kashi
 - McGill U

- **2B-04** 100 - How to leverage AI in discrete manufacturing for the aeronautic industry
 - Joel McQuaid et al.
 - Ryerson U

- **2C-04** 125 - Correlation of simulation vs. bird strike tests on sandwich composite panels
 - Barry Turner
 - Maya HTT

- **2D-04** 72 - Comparison between modern engine and old engine aircraft on contrail ice particles formation
 - Gianfilippo de Leva
 - Bombardier Aerospace

- **2E-04** 56 - Using artificial neural networks in aircraft performance modelling
 - Sébastien Cantin et al.
 - Bombardier Aerospace

- **2F-04** 135 - UAV swarm control and its influence on cognitive workload: a field experiment
 - Nicolas Vincent-Boulay
 - Concordia U

- **2G-04** 135 - UAV swarm control and its influence on cognitive workload: a field experiment
 - Marcel Kaufmann et al.
 - Polytechnique Montréal
Technical Session 3

Wed 15 May | 10:15-11:45

<table>
<thead>
<tr>
<th>Terrebonne</th>
<th>Rosmère</th>
<th>Des Prairies</th>
<th>Chomedey</th>
<th>Auteuil</th>
<th>Vimont</th>
<th>Giuseppe-Saputo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shape Optimization</td>
<td>Aeroelasticity</td>
<td>Metallic Aerostructures</td>
<td>Composites</td>
<td>Airflow Optimization</td>
<td>Conceptual Design</td>
<td>Flight Test Techniques</td>
</tr>
</tbody>
</table>

Chair: David Zingg
University of Toronto

Chair: Goetz Bramesfeld
Ryerson University

Chairs: Priti Wanjara, NRC
Mathieu Brochu, McGill University
Julien Chauvée, Altair
TBD
Susan Liscouet-Hanke, Concordia University
Malcolm Imray, NRC

<table>
<thead>
<tr>
<th>3A-01</th>
<th>3B-01</th>
<th>3C-01</th>
<th>3D-01</th>
<th>3E-01</th>
<th>3F-01</th>
<th>3G-01</th>
</tr>
</thead>
<tbody>
<tr>
<td>181 - Aerodynamic Shape Optimization for the NURBS-Enhanced Discontinuous Galerkin Method</td>
<td>21 - Medium-fidelity model-order reduction-based flutter analysis</td>
<td>166 - Hot Cracking Susceptibility of Aluminum Alloy 7075 in Laser Welding</td>
<td>9 - Challenges of computed tomography inspection for carbon/PEEK discontinuous long fiber composite gas turbine engine components</td>
<td>126 - Investigation of a passive flow control device in an 5-duct inlet of a propulsion system with high subsonic flow</td>
<td>98 - Efficiency comparison of a passively coupled tiltrotor and traditional small UAV configurations</td>
<td>76 - Techniques and technology to conduct 'near-miss' flight testing for RPAS detect and avoid system development</td>
</tr>
</tbody>
</table>

Manmeet Bharba
McGill U

Brandon Lowe et al
UTIAS

Mohammed Alkhabbat et al
RMC

Gilles-Philippe Picher-Martel et al
ETS-LARCASE

Asad Asghar et al
UTIAS

Devin Barcelos et al
ETS-LARCASE

Kris Ellis
RMC

<table>
<thead>
<tr>
<th>3A-02</th>
<th>3B-02</th>
<th>3C-02</th>
<th>3D-02</th>
<th>3E-02</th>
<th>3F-02</th>
<th>3G-02</th>
</tr>
</thead>
<tbody>
<tr>
<td>85 - Nonlinear medium-fidelity framework for the study of static transonic aerelasticity</td>
<td>175 - Friction Stir Welding of High-Strength Aerospace Aluminum Alloys</td>
<td>121 - Mechanical properties of graphene-enhanced glass-fiber reinforced composite rods manufactured by pultrusion</td>
<td>162 - A Numerical Study on the Effect of Hole Imperfection Location on Film Cooling Effectiveness</td>
<td>34 - Development of a thermal analysis capability for early validation of aircraft system architectures</td>
<td>29 - Operational challenges and strategy for the Bombardier Global 7500 envelope expansion testing to Mach 0.995</td>
<td></td>
</tr>
</tbody>
</table>

Marnie Segui et al
ETS-LARCASE

Miguel Gagnon et al
Polytechnique Montréal

Simon Larose et al
NRC

Nima Moghimi et al
NanoXplore Inc.

Taha Rezzag et al
Ryerson U

Florian Sanchez et al
Concordia U

Guillaume Savoie Chiasson
Bombardier Aerospace

<table>
<thead>
<tr>
<th>3A-03</th>
<th>3B-03</th>
<th>3C-03</th>
<th>3D-03</th>
<th>3E-03</th>
<th>3F-03</th>
<th>3G-03</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 - A dynamically-deflated GMRES adjoint solver for aerodynamic shape optimization</td>
<td>108 - Kinematics of a free-pitching flexible cantilever wing with structural and aerodynamic non-linearities at transitional Reynolds numbers</td>
<td>7 - The impact of surface state on the mechanical properties of aluminum 2024 AlClad® friction-stir-welded lap joints</td>
<td>130 - Moisture diffusion in polymeric composite material at different void contents</td>
<td>164 - Compound Angle Sister Hole Location Effect on Film Cooling Performance</td>
<td>71 - Part consolidation of an avionics pedestal by topology optimization-based DIAM (Design for Additive Manufacturing)</td>
<td>Keynote: Certification of Aeroplanes for Flight in Icing - Part 1</td>
</tr>
</tbody>
</table>

Chih-Hao Chen et al
McGill U

Crystal Itwar Barrett et al
RMC

Bénédicte Robitaille et al
Polytechnique Montréal

Afschin Bayatpour et al
Réson U

Sana Abd Alsalam et al
Concordia U

Kevin Conklin et al
Queen’s U

Jim Martin
Strategic Aviation

<table>
<thead>
<tr>
<th>3A-04</th>
<th>3B-04</th>
<th>3C-04</th>
<th>3D-04</th>
<th>3E-04</th>
<th>3F-04</th>
<th>3G-04</th>
</tr>
</thead>
<tbody>
<tr>
<td>102 - Robust natural laminar flow (NFL) nacelle design</td>
<td>179 - Revisiting Wing Aerelasticity and Airstream Energy Extraction with Transonic Aircraft Examples</td>
<td>137 - Laser- and cutting-based surface quality enhancement and functionalization of additively manufactured parts</td>
<td>143 - Boron nitride nanotube composites for aerospace applications</td>
<td>147 - Evaluation of acoustic field of small tubercled propellers in static condition</td>
<td>86 - Lightweight design of a reclining aircraft seat considering manufacturability and crashworthiness</td>
<td>Keynote: Certification of Aeroplanes for Flight in Icing - Part 2</td>
</tr>
</tbody>
</table>

Reza Sudri et al
Bombardier Aerospace

Denis Kholodar
Bombardier Aerospace

Evgueni Bordatchev et al
NRC

Michael Jakubinek et al
NRC

Asad Asghar et al
RMC

Neil Trivers et al
Queen’s U

Jim Martin
Strategic Aviation

<table>
<thead>
<tr>
<th>3E-05</th>
<th>3F-05</th>
<th>3G-05</th>
</tr>
</thead>
<tbody>
<tr>
<td>151 - A low Reynolds number experimental evaluation of tubercles on a low-pressure turbine cascade</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Alex Pym et al
RMC
Technical Session 4

Wed 15 May | 14:45-16:15

<table>
<thead>
<tr>
<th>Terrebonne</th>
<th>Rosmère</th>
<th>Des Prairies</th>
<th>Chomedey</th>
<th>Auteuil</th>
<th>Vimont</th>
<th>Giuseppe-Saputo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerodynamics</td>
<td>Aerodynamics</td>
<td>Aerospace Manufacturing Technologies</td>
<td>Aerospace Manufacturing Technologies</td>
<td>Propulsion</td>
<td>Aircraft Design & Development</td>
<td>Human Factors & Training / Flight Ops & Flight Test</td>
</tr>
<tr>
<td>Computational Methods 1</td>
<td>Turbulence and Drag Reduction 1</td>
<td>Additive Manufacturing 1</td>
<td>Advanced Manufacturing 1</td>
<td>Gas Turbine Engines</td>
<td>Structural Design</td>
<td>Human Factors in Flight Test</td>
</tr>
<tr>
<td>Chair: Catherine Mavriplis</td>
<td>Chair: Reza Sadri</td>
<td>Chairs: Ehsan Toyserkani, University of Waterloo</td>
<td>Chairs: Yadienka Martinez Rubi, NRC</td>
<td>Chair: Paul Bordush, Royal Military College of Canada</td>
<td>Chair: Denis Walch, Bombardier Aerospace</td>
<td>Chair: Nami Bae, CMC Electronics</td>
</tr>
<tr>
<td>University of Ottawa</td>
<td>Bombardier Aerospace</td>
<td>Vladimir Pankov,</td>
<td>E. Dalgaard, P&WC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4A-01</td>
<td>4B-01</td>
<td>4C-01</td>
<td>4D-01</td>
<td>4E-01</td>
<td>4F-01</td>
<td>4G-01</td>
</tr>
<tr>
<td>50 - Analysis of high-order element types for implicit large eddy simulation</td>
<td>Keynote: Laser-based Metal Additive Manufacturing: Challenges and Opportunities for Aerospace Applications</td>
<td>153 - Carbon and boron nitride nanotube sheets for structural materials and functional coatings</td>
<td>46 - Integration of secondary air system for multidisciplinary design optimisation of gas turbines</td>
<td>132 - MuRX: a collaborative wingbox development from conceptual stage</td>
<td>105 - Development and optimization of flight dynamics, control laws and avionics system for a UAV with a multi-scale optimized blended-wing body configuration</td>
<td></td>
</tr>
<tr>
<td>4A-02</td>
<td>4B-02</td>
<td>4C-02</td>
<td>4D-02</td>
<td>4E-02</td>
<td>4F-02</td>
<td>4G-02</td>
</tr>
<tr>
<td>103 - Recent progress in unstructured RANS-based CFD simulation of S-duct flow with boundary-layer ingestion</td>
<td>Keynote: Laser-based Metal Additive Manufacturing: Challenges and Opportunities for Aerospace Applications (continued)</td>
<td>113 - NiCrAlY coating of polymeric composite materials for deicing</td>
<td>14 - Design optimization of aeroengine turbine blade and disc fixing</td>
<td>131 - Creation of beam-based structural models for aeroelastic analyses of swept transonic wings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4A-03</td>
<td>4B-03</td>
<td>4C-03</td>
<td>4D-03</td>
<td>4E-03</td>
<td>4F-03</td>
<td>4G-03</td>
</tr>
<tr>
<td>51 - Stabilizing filters for high-order implicit large eddy simulation</td>
<td>123 - Wake modelling with prediction of handling qualities for air-to-air refueling</td>
<td>116 - Investigation of the turbulent/non-turbulent interface in the subsonic flow past the NACA0012 airfoil</td>
<td>165 - Durable icephobic coatings for aerospace applications</td>
<td>115 - Nonlinear dynamic aeroelasticity response analyses of very flexible aircraft at conceptual design stage: a sensitivity study</td>
<td>25 - Assessing pilot response to low-frequency airwake disturbances in shipboard helicopter operations</td>
<td></td>
</tr>
<tr>
<td>4A-04</td>
<td>4B-04</td>
<td>4C-04</td>
<td>4D-04</td>
<td>4E-04</td>
<td>4F-04</td>
<td>4G-04</td>
</tr>
<tr>
<td>111 - Grid study for delayed detached eddy-simulation’s grid of a stalled wing</td>
<td>122 - Aerodynamic characteristics of tubercled slotted flaps</td>
<td>17 - Atopology optimization approach considering design for additive manufacturing</td>
<td>99 - Discover the next generation of design for aerospace</td>
<td>149 - Integrated dynamic aeroelasticity response analyses and multiscale design optimization of unmanned aerial vehicle with blended-wing body configuration</td>
<td>54 - An education in seaplane flight testing</td>
<td></td>
</tr>
</tbody>
</table>

Carlos A. Pereira et al | Huiying Zhang et al | Yadienka Martinez Rubi et al | Timothé Peočh et al | Denis Walch | (Ted) Ze Feng Gan et al |
| Concordia U | Queen’s U | U of Waterloo | ETS-LARCASE | Bombardier Aerospace | Carleton U |

| Bombardier Aerospace | RMC | U of Waterloo | ETS-LARCASE | Bombardier Aerospace | Carleton U |

Mohsen Hamedi et al | Aviral Prakash et al | David Bachman et al | Naiheng Song et al | Hicham Ousseni | Mostafa El Sayed |
| Concordia U | Polytechnique Montréal | NRC | NRC | ETS-LARCASE | Carleton U |

Violaine Huck et al | Raj Mehta et al | John Olsen et al | Yafus Siddiqui | Mostafa El Sayed et al | Giorgio Clementi |
| ETS-LARCASE | RMC | Queen’s U | Maya HTI | Carleton U | ITPS Canada Ltd. |
Poster Presentations | On Display All 3 Days

<table>
<thead>
<tr>
<th>I-01</th>
<th>I-02</th>
<th>I-03</th>
<th>I-04</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 - Effects of heat treatment on microstructure & mechanical properties of AlSi10Mg fabricated by SLM process</td>
<td>15 - Mode I test development and results correlated with electromagnetic shaker data</td>
<td>28 - Validating novel stiffened panel configuration generated with topology optimization using non-linear analysis</td>
<td>170 - Nonlinear System Characterization of a NACA 0015 Airfoil High Lift System under Dual Location Open Loop Flow Control</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Catherine Dolly Clement</th>
<th>María José Grasso</th>
<th>Jean-François Gamache</th>
<th>Robert Alstrom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carleton U</td>
<td>Concordia U</td>
<td>Polytechnique Montréal</td>
<td>U de Sherbrooke</td>
</tr>
</tbody>
</table>
Technical Session 5

Wed 15 May | 16:15-17:45

Chair: Hong Yang, Bombardier Aerospace
Chair: Siva Nadarajah, McGill University
Chair: Julien Chaussée, Altair
Chair: Abu Sayed Kabir, Carleton University
Chair: Julieta Barroeta Robles, NRC
Chair: Pat Piperni, Clarkson University
Chair: Joon Chung, Ryerson University

<table>
<thead>
<tr>
<th>Location</th>
<th>Session Title</th>
<th>Authors</th>
<th>Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terrebonne</td>
<td>Aerodynamics</td>
<td>Matthieu Parenteau et al</td>
<td>Polytechnique Montréal</td>
</tr>
</tbody>
</table>
| Rosmère | Computational Methods 2
Reduction 2 | Raben Perez et al | RMC |
| Des Prairies | Aerospace Manufacturing | Michael Jakubínek et al | Carleton University |
| Chomedey | Aerospace Structures & Manufacturing | Michael Hudack | Dynamic Systems, Inc. |
| Auteuil | Aircraft Design & Development | Prajwal Prakash | DLR |
| Vimont | Human Factors & Training / Flight Ops & Flight Test | Garrick Cabour | Polytechnique Montréal |
| Giuseppe-Saputo| Joon Chung, Ryerson University | | |

5A-01
- **5B-01: Time spectral vortex lattice method coupled with 2.5D RANS**
 - Authors: Matthieu Parenteau et al
 - Institution: Polytechnique Montréal

5A-02
- **5B-02: Recent progress using high-order unstructured methods for turbulent flows**
 - Authors: Brian Vermeire et al
 - Institution: Concordia University

5A-03
- **5B-03: Rotational effects on airfoils using 2.5D Reynolds-averaged Navier-Stokes solver**
 - Authors: Minh Tuan Nguyen et al
 - Institution: Polytechnique Montréal

5A-04
- **5B-04: Vorticity-based polynomial adaptation for moving and deforming domains**
 - Authors: Ramin Ghoreishi et al
 - Institution: Concordia University
Technical Session 6

Thurs 16 May | 10:15-11:45

<table>
<thead>
<tr>
<th>Terrebonne</th>
<th>Rosmère</th>
<th>Des Prairies</th>
<th>Chomedey</th>
<th>Auteuil</th>
<th>Vimont</th>
<th>Giuseppe-Saputo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerodynamics</td>
<td>Aerodynamics</td>
<td>AMT and AS&M Joint Session</td>
<td>Aerospace Manufacturing Technologies</td>
<td>Aerospace Manufacturing Technologies</td>
<td>Aircraft Design & Development</td>
<td></td>
</tr>
<tr>
<td>Computational Methods 3</td>
<td>Icing 1</td>
<td>Additive Manufacturing 3</td>
<td>Modelling and Simulation 1</td>
<td>Automation</td>
<td>Product Lifecycle Management</td>
<td></td>
</tr>
</tbody>
</table>

Chair: Eric Laurendeau

Polytechnique Montréal

Chair: Mathieu Olivier

Université Laval

Chairs: Denis Walch, Bombardier Aerospace

Hamid Akbarzadeh, McGill University

Chairs: Michel Dion, Bell Helicopter

A. Bonakdar, Siemens Canada

Chairs: Bruno Monsarrat, NRC

M. Malavi-Zarandi, NRC

Chair: Susan Liscouet-Hanke, Concordia University

<table>
<thead>
<tr>
<th>6A-01</th>
<th>6B-01</th>
<th>6C-01</th>
<th>6D-01</th>
<th>6E-01</th>
<th>6F-01</th>
<th>6G-01</th>
</tr>
</thead>
</table>

Keigan Madean et al

McGill U

Hassan El Sahely et al

ETS-LARCASE

Hamidreza Y. Sarvestani et al

McGill U

Charles Simonneau et al

SimuTech Group

Bruno Monsarrat et al

NRC

Andrea Cartile et al

Concordia U

<table>
<thead>
<tr>
<th>6A-02</th>
<th>6B-02</th>
<th>6C-02</th>
<th>6D-02</th>
<th>6E-02</th>
<th>6F-02</th>
<th>6G-01</th>
</tr>
</thead>
<tbody>
<tr>
<td>39 - Rapid and reliable solution of parametrized aerodynamics problems by model reduction</td>
<td>81 - Numerical simulation of ice accretion coupled with thermal de-icing using Messinger-based approach</td>
<td>119 - Fracture surface morphology for polymer additive manufactured parts</td>
<td>Keynote: 171 - Additive Manufacturing Process Simulation with ANSYS (continued)</td>
<td>174 - Advanced robot path planning for cold spray additive manufacturing</td>
<td>38 - Certification requirements in the context of the Canadian aeronautical product modification industry</td>
<td></td>
</tr>
</tbody>
</table>

Masayuki Yano

UTIAS

Kevin Ignatowicz et al

ETS-LARCASE

Hayat El Fazani et al

Carleton U

Charles Simonneau et al

SimuTech Group

Manuel Martin et al

Giordano Zilembo et al

Concordia U

<table>
<thead>
<tr>
<th>6A-03</th>
<th>6B-03</th>
<th>6C-03</th>
<th>6D-03</th>
<th>6E-03</th>
<th>6F-03</th>
<th>6G-01</th>
</tr>
</thead>
<tbody>
<tr>
<td>53 - Paired explicit Runge-Kutta schemes for computational aerodynamics</td>
<td>55 - Eulerian-Lagrangian CFD model for aircraft ground de-icing by liquid sprays</td>
<td>27 - Additive manufacturing approach for repairing Ti alloy fan blades with severe foreign object damage</td>
<td>107 - Using topological optimization for greater buy-to-fly ratio</td>
<td>157 - Evaluation of Alternative Paint Stripping Methods</td>
<td>93 - A systematic approach to the Changed Product Rule</td>
<td></td>
</tr>
</tbody>
</table>

Siavash Hedayati Nasab et al

Concordia U

Samir Ernez et al

ETS-LARCASE

Priti Wanjara et al

NRC

Marija Harvan et al

Bombardier Aerospace

Anne Fagnan et al

NRC

Alan Padilla et al

Concordia U

<table>
<thead>
<tr>
<th>6A-04</th>
<th>6B-04</th>
<th>6C-04</th>
<th>6D-04</th>
<th>6E-04</th>
<th>6F-04</th>
<th>6G-01</th>
</tr>
</thead>
</table>

Syam Vangara et al

McGill U

Simon Bourgault-Côté et al

Polytechnique Montréal

Xinjin Cao et al

NRC

Ali Ibrahim et al

McGill U

Gabriel Côté et al

NRC

Neda Baghalizadeh Moghadam

Polytechnique Montréal
<table>
<thead>
<tr>
<th>Technical Session 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thurs 16 May</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Terrebonne</th>
<th>Rosmère</th>
<th>Des Prairies</th>
<th>Chomedey</th>
<th>Auteuil</th>
<th>Vimont</th>
<th>Giuseppe-Saputo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerodynamics</td>
<td>aerodynamics</td>
<td>AMT and AS&M Joint Session</td>
<td>Aerospace Manufacturing Technologies</td>
<td>Aerospace Manufacturing Technologies</td>
<td>Aircraft Design & Development</td>
<td>Advanced Manufacturing Systems Engineering</td>
</tr>
<tr>
<td>Computational Methods 4</td>
<td>Icing 2</td>
<td>Testing and Evaluation</td>
<td>Modelling and Simulation 2</td>
<td>Advanced Manufacturing 3</td>
<td>Aircraft Design & Development</td>
<td>Systems Engineering</td>
</tr>
<tr>
<td>Chair: Brian Vermeire</td>
<td>Chair: François Morency</td>
<td>Ecole de technologie supérieure</td>
<td>Chair: Sylvain Turenne</td>
<td>Polytechnique Montréal</td>
<td>S. Sarafan, APG-Neuros</td>
<td>Hamidreza Yazdani Sarvestani</td>
</tr>
<tr>
<td>Chair: Sylvain Turenne</td>
<td>Chair: Bin Shi, NRC</td>
<td>H. Champliaud, École de Technologie Supérieure</td>
<td>Chair: Hamidreza Yazdani Sarvestani</td>
<td>University M. Hassan, NRC</td>
<td>Chair: Stéphane Dufresne</td>
<td>Bombardier Aerospace</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7A-01</th>
<th>7B-01</th>
<th>7C-01</th>
<th>7D-01</th>
<th>7E-01</th>
<th>7F-01</th>
<th>7G-01</th>
</tr>
</thead>
<tbody>
<tr>
<td>104 - High order direct numerical simulation of a 30 P30N three element high-lift airfoil</td>
<td>124 - Freezing of water droplet shedding on different surface wettabilities: numerical analysis</td>
<td>61 - Through-thickness residual stresses, microstructure and mechanical properties of electron beam welded C66N martensitic stainless steel after post-weld heat treatment (invited)</td>
<td>49 - Modeling of shot peen forming using non-Euclidean plate theory</td>
<td>91 - Bio-inspired ceramics for aerospace applications</td>
<td>136 - Integrated development environment for aircraft systems used for the requirement definition and validation of complex systems</td>
<td>137 - Advanced manufacturing systems engineering approach for integrated modular architecture: case study for landing gear control system</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7A-02</th>
<th>7B-02</th>
<th>7C-02</th>
<th>7D-02</th>
<th>7E-02</th>
<th>7F-02</th>
<th>7G-02</th>
</tr>
</thead>
<tbody>
<tr>
<td>121 - A numerical fluid-structure interaction study of a vertical axis wind turbine with flexible foils</td>
<td>37 - Study of runback rivulet flow using digital image projection method</td>
<td>92 - Development of thermo-mechanical finite element simulation and experimental investigation on stress fields in laser powder-bed fusion additive manufacturing process</td>
<td>68 - A model-based systems engineering approach for integrated modular architecture: case study for landing gear control system</td>
<td>156 - Augmented reality for composite manufacturing – demonstration for quality control</td>
<td>128 - Analysis-centric template-enabling requirements validation through engineering models</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7A-03</th>
<th>7B-03</th>
<th>7C-03</th>
<th>7D-03</th>
<th>7E-03</th>
<th>7F-03</th>
<th>7G-03</th>
</tr>
</thead>
<tbody>
<tr>
<td>23 - Sound generation in low-Mach number flow past a circular cylinder</td>
<td>129 - High order direct numerical simulation of an ice NLF-0414 airfoil</td>
<td>12 - Analysis of ingot-splitting behavior during electron beam physical vapor deposition of NiCoCrAlY oxidation-resistant coatings</td>
<td>158 - Development of a Low-Cast Method for Screening Hypersonic Materials</td>
<td>182 - New computer vision hybrid approach for the analysis of large 3D point clouds for inspection applications</td>
<td>128 - Analysis-centric template-enabling requirements validation through engineering models</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7A-04</th>
<th>7B-04</th>
<th>7C-04</th>
<th>7D-04</th>
<th>7E-04</th>
<th>7F-04</th>
<th>7G-04</th>
</tr>
</thead>
<tbody>
<tr>
<td>161 - Efficient application of automatic differentiation to a second-order unstructured heterogeneous computational aerodynamics algorithm</td>
<td>13 - Analytical and numerical investigations of plasticity of a damped aluminum plate subjected to impact of a spherical rigid body</td>
<td>158 - Development of a Low-Cast Method for Screening Hypersonic Materials</td>
<td>48 - On the performance of cryogenic technology in milling of hardened H13 steel</td>
<td>159 - Life estimation of lighting mast towers</td>
<td>48 - On the performance of cryogenic technology in milling of hardened H13 steel</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chair: Brian Vermeire</th>
<th>Chair: François Morency</th>
<th>Ecole de technologie supérieure</th>
<th>Chair: Sylvain Turenne</th>
<th>Polytechnique Montréal</th>
<th>S. Sarafan, APG-Neuros</th>
<th>Hamidreza Yazdani Sarvestani</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chair: Sylvain Turenne</td>
<td>Chair: Bin Shi, NRC</td>
<td>H. Champliaud, École de Technologie Supérieure</td>
<td>Chair: Hamidreza Yazdani Sarvestani</td>
<td>University M. Hassan, NRC</td>
<td>Chair: Stéphane Dufresne</td>
<td>Bombardier Aerospace</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7A-01</th>
<th>7B-01</th>
<th>7C-01</th>
<th>7D-01</th>
<th>7E-01</th>
<th>7F-01</th>
<th>7G-01</th>
</tr>
</thead>
<tbody>
<tr>
<td>104 - High order direct numerical simulation of a 30 P30N three element high-lift airfoil</td>
<td>124 - Freezing of water droplet shedding on different surface wettabilities: numerical analysis</td>
<td>61 - Through-thickness residual stresses, microstructure and mechanical properties of electron beam welded C66N martensitic stainless steel after post-weld heat treatment (invited)</td>
<td>49 - Modeling of shot peen forming using non-Euclidean plate theory</td>
<td>91 - Bio-inspired ceramics for aerospace applications</td>
<td>136 - Integrated development environment for aircraft systems used for the requirement definition and validation of complex systems</td>
<td>137 - Advanced manufacturing systems engineering approach for integrated modular architecture: case study for landing gear control system</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7A-02</th>
<th>7B-02</th>
<th>7C-02</th>
<th>7D-02</th>
<th>7E-02</th>
<th>7F-02</th>
<th>7G-02</th>
</tr>
</thead>
<tbody>
<tr>
<td>121 - A numerical fluid-structure interaction study of a vertical axis wind turbine with flexible foils</td>
<td>37 - Study of runback rivulet flow using digital image projection method</td>
<td>92 - Development of thermo-mechanical finite element simulation and experimental investigation on stress fields in laser powder-bed fusion additive manufacturing process</td>
<td>68 - A model-based systems engineering approach for integrated modular architecture: case study for landing gear control system</td>
<td>156 - Augmented reality for composite manufacturing – demonstration for quality control</td>
<td>128 - Analysis-centric template-enabling requirements validation through engineering models</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7A-03</th>
<th>7B-03</th>
<th>7C-03</th>
<th>7D-03</th>
<th>7E-03</th>
<th>7F-03</th>
<th>7G-03</th>
</tr>
</thead>
<tbody>
<tr>
<td>23 - Sound generation in low-Mach number flow past a circular cylinder</td>
<td>129 - High order direct numerical simulation of an ice NLF-0414 airfoil</td>
<td>12 - Analysis of ingot-splitting behavior during electron beam physical vapor deposition of NiCoCrAlY oxidation-resistant coatings</td>
<td>158 - Development of a Low-Cast Method for Screening Hypersonic Materials</td>
<td>182 - New computer vision hybrid approach for the analysis of large 3D point clouds for inspection applications</td>
<td>128 - Analysis-centric template-enabling requirements validation through engineering models</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7A-04</th>
<th>7B-04</th>
<th>7C-04</th>
<th>7D-04</th>
<th>7E-04</th>
<th>7F-04</th>
<th>7G-04</th>
</tr>
</thead>
<tbody>
<tr>
<td>161 - Efficient application of automatic differentiation to a second-order unstructured heterogeneous computational aerodynamics algorithm</td>
<td>13 - Analytical and numerical investigations of plasticity of a damped aluminum plate subjected to impact of a spherical rigid body</td>
<td>158 - Development of a Low-Cast Method for Screening Hypersonic Materials</td>
<td>48 - On the performance of cryogenic technology in milling of hardened H13 steel</td>
<td>159 - Life estimation of lighting mast towers</td>
<td>48 - On the performance of cryogenic technology in milling of hardened H13 steel</td>
<td>48 - On the performance of cryogenic technology in milling of hardened H13 steel</td>
</tr>
</tbody>
</table>
General Chair CASI AERO 2019 Conference

Éric Laurendeau | Polytechnique Montréal

Dr. Éric Laurendeau is Professor in the Department of Mechanical Engineering at Polytechnique Montréal and Canada Research Chair in Modelling and Control of Unsteady Aircraft Aerodynamics. A graduate from McGill University (B.Eng. 1989), SupAéro (D.E.A, France, 1989) and University of Washington (Ph.D., USA, 1995), his research interests are in the area of Computational Aerodynamics and High-Performance Computing towards the study of aerodynamic flows over aircraft configurations. He is a past-president of the CFD Society of Canada, and is currently a member of Compute Canada Advisory Council on Research as well as Calcul Québec Scientific Committee.

Keynote Speaker

Martine Rothblatt | Unither Bioelectronics/United Therapeutics Corporation

Martine Aliana Rothblatt is an American lawyer, author, and entrepreneur. Rothblatt graduated from University of California, Los Angeles with a combined law and MBA degree in 1981, then began to work in Washington, D.C., first in the field of communications satellite law, and eventually in life sciences projects like the Human Genome Project. She is the founder and Chairwoman of the Board of United Therapeutics.

Urban Mobility Plenary Panellists

Denis Faubert | CARIC

Denis Faubert, who earned his Ph.D. in Laser Physics from Université Laval, is the President and CEO of the Consortium for Aerospace Research and Innovation in Canada (CARIC). He serves on many committees and projects, including the Green Aviation Research & Development Network Board (GARDN), National Optics Institute (INO) and Aéro Montréal. He is also a member of the Selection Committee of Canada’s Networks of Centres of Excellence and the Research Partnership Committee of the Natural Sciences and Engineering Research Council of Canada (NSERC).
Michel Dion | Bell Helicopter

Michel Dion leads a team of technical specialists who are passionate about research and development at Bell. His primary goal is to foster innovation for the next generations of commercial vertical-lift products and to redefine the needs of a future that is at our doorstep. Drones, air taxis and on-demand mobility are some of his team’s favourite topics.

Michel joined Bell in 2006 to head the Integrated Product Team, for the 206L Long Ranger upgrade program. He went on to hold different leadership roles, in product development and R&D activities as part of, among others, consortiums such as CRIAQ, CARIC and GARDN.

Wajid Ali Chishty | National Research Council of Canada

Wajid is a Senior Research Officer and a Technology Leader at the National Research Council Canada. He holds a PhD in Mechanical Engineering from Virginia Tech, a MSE in Aerospace Engineering from University of Michigan and an MBA in Finance from University of Karachi. Wajid has more than 25 years of experience in the areas of gas turbine research and MRO and an additional five years of experience in academia. He has authored many well-cited publications and is a member of a number of national and international professional committees and societies.

José Martin | Transport Canada

Information not available.

Phil Cole | Marinvent

Phil Cole joined Marinvent as VP Business Development in December 2011. Since that date, Phil has also taken up roles of VP Business Development for Marinvent’s Advanced Aerospace Solutions Joint Venture and for Marinvent’s recently launched sister company Certification Center Canada.
HYBRID/ELECTRIC PROPULSION PLENARY PANELLISTS

David Rancourt | Université Sherbrooke

David Rancourt is an assistant professor at the Université de Sherbrooke since January 2017. His research interests is in design of aircraft (aircraft, helicopters, drones), electric propulsion and systems engineering. He is the Director of the Aerospace Engineering Design and Training Institute of Sherbrooke (AéroUdeS). Prior to joining the University of Sherbrooke, David graduated from the Georgia Institute of Technology in Atlanta with a PhD from his research on the development of a new electric propulsion helicopter configuration.

Askin Isikveren | Safran Group

Askin’s 28-year career comprises a broad range of technical specialisations executed in industrial (18 years), academic (5 years) and research institute (5 years) environments. He currently serves as member of the AIAA Aircraft Electric/Hybrid Electric initiative, and, Co-Chair in NATO Science and Technology Organization working groups. Since September 2015 he contributes as Programme Committee Member of the International Council of the Aeronautical Sciences (ICAS).

Philippe Novelli | ONERA

Philippe Novelli has spent most of his carrier at ONERA, the French Aerospace Lab, where he has been working in the field of CFD, combustion and system analysis, as well as research coordination, for various propulsion systems He was also the leader of the alternative fuels group of the Advisory Council for Aeronautic Research in Europe. He joined ICAO’s Environment Branch in July 2012 where he is in charge of sustainable alternative fuels.

Sylvain Larochelle | Pratt & Whitney Canada

Sylvain holds a bachelor’s degree in mechanical engineering from Royal Military College in Kingston and a Certificate in Law from Université de Montréal. He is also Chairman of the Board of Centre de Technologie Aérospatial (CTA) and Aéro21, a board member of Green Aviation Research & Development Network (GARDN), Aero Montreal Innovation Workshop and Technology and Innovation Committee of Aerospace Industry Association of Canada (AIAC).
Catherine Beaudry | Polytechnique Montréal

Catherine Beaudry has a Ph.D. and a M.Phil. in economics from Oxford University. She is a professor at Polytechnique Montréal and holds the Canada Research Chair at Level I on the creation, development and commercialization of innovation. She is the principal investigator of the "Partnership for the Organization of Innovation and New Technologies" (4POINT0), funded by SSHRC and FRQSC. She specializes in economics of science, technology and innovation.

Bruno Agard | Polytechnique Montréal

Information not available.

Yoan Buisson | Stelia Aerospace

Engineer for Airbus Group since 2012 and currently working for one of its subsidiary, Stelia Aerospace Canada. After several years in Operations, Yoan now head of the “4.0 Roadmap” project where he develops Machine Learning and simulation based applications. His goal, through these technologies, is to exploit data so as to improve Stelia’s decision making processes.

Yves Proteau | APN Inc.

Mr. Proteau is also Co-Owner of Umbrella Technologies and Genetik Sport. He also an Administrator of the CEFRIO, SBI Inc and president of the Consortium 4.0 of Laval University. After he got a Bachelor’s and a Master’s degree in Business Administration (MBA), Mr Proteau worked for four years as a consultant for DMR Group. He then started a fourteen-year career at Julien Inc. He began his tenure as Head of ERP Implementation. He became the VP of Production and co-owner of the Company. When he left Julien Inc., he returned to the consultation business for a year before joining his brother, Jean Proteau, in the manufacturing industry in 2004. He became the co-owner of APN in 2005. He is now Co-President of APN. APN has two plant in Canada and 2 in California. APN was honoured to be the first 4.0 technology show case of the Province of Quebec.
Impact of 5G Plenary Panelists

Mark Aruja | Unmanned Systems Canada

Mark Aruja is the Chairman of Unmanned Systems Canada, the national not-for-profit association representing the unmanned systems community. His involvement with USC started with its inception in 2003 and he was elected Chairman in 2015. A 32-year aviation career in the Canadian Armed Forces included assignments as Wing Commander responsible for naval aviation, Director of Space Development, and DG Joint Force Development. He then spent 12 years with Thales before starting his retirement as Chairman of USC.

Pierre Boucher | Innovation ENCQOR

Brunilde Sansò | Polytechnique Montréal

Brunilde Sansò is a full professor of networking in the department of Electrical Engineering of Polytechnique Montréal and a member of GERAD, a world-renowned applied mathematics research center. She has 30 years of experience in telecommunication network optimisation, reliability, performance and design. She leads the LORLAB, a research group dedicated to developing effective applied mathematics methods to the design and performance of wireless and wireline telecommunication networks. In the latest years, her group has tackled the large-scale performance and robustness of the Internet of things and smart-cities telecommunication infrastructure.
Sébastien Vaillancourt | Thales Group

Sébastien Vaillancourt est responsable de programme chez Thales, ainsi que responsable du site d’innovation de Québec dans le cadre du programme ENCQOR pour la recherche et l’innovation dans le secteur des technologies de rupture 5G. Détenteur de baccalauréat en génie ainsi que d’un MBA, il a une vaste expérience en gestion de projets dans différents domaines technologiques. Dans le cadre de projet d’adoption de la 5G Thales développe différentes solutions en lien avec la ville intelligente. Un de ces projets est sa solution de policier connecté qui utilise plusieurs technologies et capteurs, ainsi que l’assistance de drones.

Christophe Bouchaud | Aviation Strategies International

Christophe Bouchaud has always been involved in the field of high technology, bridging the gap between technology, management, and operations within a highly diversified strategic and international context and is a co-author of Global Megatrends and Aviation: The Path to Future-Wise Organizations, ASI Institute Press, Montreal, 2019, and Airport Enterprise Management Centre, A Step towards and Industry Standard, IAP Community of Practice, Montreal, 2018.

2019 Turnbull Lecturer

Honorary Colonel Gerald Haddon | (Ret.)

Mr. Gerald Haddon was appointed Honorary Colonel of the Canadian Forces School of Aerospace Technology and Engineering, 16 Wing Borden, Ontario from October 2010 to April 2014. He is the grandson of Honorary Air Commodore, The Honourable J. A. D. McCurdy, the first British subject to fly a heavier-than-air aeroplane in the British Empire on February 23, 1909 on Bras d’Or Lake, Baddeck, Nova Scotia in an aeroplane called the Silver Dart, which he designed and built with the aid of the members of the Aerial Experiment Association.
Providing the most comprehensive range of capabilities in the technical staffing industry.

TDM Technical Services has the depth of talent and experience to give your organization the flexibility and technological expertise that are necessary to stay competitive in today’s market.

Wherever you are in the world, whatever your needs, we can help.

www.tdm.ca
<table>
<thead>
<tr>
<th>DATE</th>
<th>TIME</th>
<th>ACTIVITY</th>
<th>Terrebonne</th>
<th>Rosmère</th>
<th>Des Prairies</th>
<th>Chomedey</th>
<th>Auteuil</th>
<th>Vimont</th>
<th>Giuseppe-Saputo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tues</td>
<td>09:00</td>
<td>Welcome</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>09:00</td>
<td>Wrangleisation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>09:15</td>
<td>Martine Rothblatt, CEO Unither Bioelectronics/United Therapeutics Corporation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>May</td>
<td>10:00</td>
<td>Networking</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10:30</td>
<td>Plenary 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12:00</td>
<td>Lunch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13:30</td>
<td>Session 1</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aerodynamic Design 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rotorcraft 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Composite Manufacturing 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Structures Behavior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unmanned Aerial Vehicles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cockpit Display Design & Augmented Reality (AR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15:00</td>
<td>Networking</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15:30</td>
<td>Session 2</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aerodynamic Design 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rotorcraft 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Composite Manufacturing 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Honeycomb and Cellular Panels</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17:15</td>
<td>Session 3</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shape Optimization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aeroelasticity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Metallic Aerostuctures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Composites</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Airflow Optimization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18:30</td>
<td>Gala Dinner</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thu</td>
<td>08:30</td>
<td>Plenary 4</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>10:00</td>
<td>Impact of 5G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10:15</td>
<td>Networking</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10:30</td>
<td>Session 6</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Computational Methods 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Icing 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Additive Manufacturing 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Modelling and Simulation 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11:45</td>
<td>Session 7</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Computational Methods 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Icing 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Testing and Evaluation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Modelling and Simulation 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16:15</td>
<td>Networking</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16:30</td>
<td>Gala Reception and Dinner - CASI Senior Awards</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18:30</td>
<td>Gala Reception and Dinner - CASI Senior Awards</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symposum abbreviations</td>
<td>AD&D</td>
<td>AERO</td>
<td>AMT</td>
<td>AS&M</td>
<td>HF&T</td>
<td>FO&FT</td>
<td>PROP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>